

Sample Name:

Secret OG

Flower, Hemp Flower

Date Issued: 01/06/2020

Sample Details

Sample ID: 191004P008

Batch Number:

Show More

Cultivator / Manufacturer Show Details

Distributor / Tested For Show Details

(http://sclaboratories.s3.amazonaws.com/sample_photos/191004P008_1.jpg)

QHover to Zoom In

Share | Catalog View (/client/6957/)

Share

Easily share a link to this results page with your friends, followers, or business partners.

Copy link

Cannabinoid Analysis - Summary

View Full Results

Total THC: 0.5304%

Total CBD: 11.9431%

Sum of Cannabinoids: 15.4696%

Total Cannabinoids: 13.7200%

Moisture: NT

Density: NT

Viscosity: NT

Total THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during the decarboxylation step:

Total THC = \triangle 9THC + (THCa (0.877))

Total CBD = CBD + (CBDa (0.877))

Sum of Cannabinoids = \triangle 9THC + THCa + CBD + CBDa + CBG + CBGa + THCV + THCVa + CBC + CBCa + CBDV + CBDVa + \triangle 8THC + CBL + CBN

Total Cannabinoids = $(\Delta 9THC + 0.877*THCa) + (CBD + 0.877*CBDa) + (CBG + 0.877*CBGa) + (THCV + 0.877*THCVa) + (CBC + 0.877*CBCa) + (CBDV + 0.877*CBDVa) + <math>\Delta 8THC + CBL + CBN$

Why are Sum of Cannabinoids and Total Cannabinoids calculated separately?

Terpenoid Analysis - Summary | 36 TESTED, TOP 3 HIGHLIGHTED | View Full Results

Total Terpenoids: 1.5212%

1 β Caryophyllene (0.6224%) 2 Myrcene (0.3117%)

3 α Humulene (0.2071%)

Safety Analysis - Summary

<u>View Full Results</u>

Pesticides: Pass

Heavy Metals: NT

Foreign Material: NT

Mycotoxins: NT

Microbial Impurities (PCR): Pass

Water Activity: NT

Residual Solvents: NT

Microbial Impurities (Plating): NT

Vitamin E Acetate: NT

Show Less

Tested by high-performance liquid chromatography with diode-array detection (HPLC-DAD).

Method: QSP 1157 - Analysis of Cannabinoids by HPLC-DAD

Summary

Total THC:

0.5304%

Total THC (∆9THC+0.877*THCa)

Total CBD:

11.9431%

Total CBD (CBD+0.877*CBDa)

Total Cannabinoids: ②

13.7200%

Total CBG: 0.6767%

Total CBG (CBG+0.877*CBGa)

Total THCV: ND

Total THCV (THCV+0.877*THCVa)

Total CBC: 0.5401%

Total CBC (CBC+0.877*CBCa)

Total CBDV: 0.0297%

Total CBDV (CBDV+0.877*CBDVa)

Learn more

The cannabis plant contains dozens of active compounds called cannabinoids (https://www.sclabs.com/cannabinoids/). These compounds are the primary contributors to the psychoactive effects of cannabis.

<u>Cannabinoid testing (https://www.sclabs.com/cannabis/)</u> determines the potency of a sample to aid in dosage considerations.

Cannabinoid Test Results | 10/06/2019

Result Views

Table Pie Chart

Filter by

Swipe left on table to see additional columns

Compound	LOD/LOQ (mg/g) ⑦	Result (mg/g)	Result (%)
CBDA	0.052 / 0.156	124.692	12.4692
CBD	0.059 / 0.180	10.076	1.0076
CBGA	0.034 / 0.102	6.570	0.6570
CBCA	0.233 / 0.705	6.159	0.6159
THCA	0.052 / 0.156	4.478	0.4478
Д9ТНС	0.052 / 0.158	1.377	0.1377
CBG	0.048 / 0.144	1.005	0.1005
CBDVA	0.030 / 0.090	0.339	0.0339
Δ8ΤΗC	0.074 / 0.224	ND	ND
THCV	0.045 / 0.137	ND	ND
THCVA	0.088 / 0.267	ND	ND
CBDV	0.027 / 0.080	ND	ND
CBL	0.114 / 0.346	ND	ND
CBN	0.052 / 0.157	ND	ND
СВС	0.048 / 0.146	ND	ND

SUM OF CANNABINOIDS 154.696 mg/g 15.4696%

Moisture Test Result **Not Tested Density Test Result Not Tested Viscosity Test Result Not Tested Show Less** Terpene analysis utilizing gas chromatography-flame ionization detection (GC-FID). Terpenes are the aromatic compounds that endow cannabis with their unique scent and effect. Following are the primary terpenes detected. Method: QSP 1192 - Analysis of Terpenoids by GC-FID Summary Total Terpenoids (mg/g): 15.212 mg/g

Dominant Terpenoids

Total Terpenoids (%):

1.5212%

Below are this sample's 3 most abundant terpenoids by volume. .

- 1 β Caryophyllene 0.6224%
- 2 Myrcene 0.3117%
- 3 α Humulene 0.2071%

Learn more

Terpenoid analysis (https://www.sclabs.com/terpene-analysis/) is crucial for differentiating between strains of cannabis, as terpenoids (https://www.sclabs.com/terpene/) have a major influence on the medical and psychological effects of a plant. The relationship between cannabinoids and terpeneoids is known as the "entourage effect."

Terpenoid Test Results | 10/06/2019

Result Views

Table Bar Graph

Filter by

Swipe left on table to see additional columns

Compound	LOD/LOQ (mg/g) ⑦	Result (mg/g)	Result (%)
β Caryophyllene	0.029 / 0.087	6.224	0.6224
Myrcene	0.03 / 0.092	3.117	0.3117
α Humulene	0.017 / 0.051	2.071	0.2071
a Bisabolol	0.057 / 0.172	1.299	0.1299

TOTAL 15.212 mg/g 1.5212%

Compound	LOD/LOQ (mg/g)	Result (mg/g)	Result (%)
Limonene	0.04 / 0.12	1.11	0.111
Linalool	0.043 / 0.13	0.50	0.050
α Pinene	0.028 / 0.084	0.202	0.0202
Nerolidol	0.05 / 0.15	0.17	0.017
β Pinene	0.016 / 0.048	0.155	0.0155
Caryophyllene Oxide	0.011 / 0.034	0.145	0.0145
Terpineol	0.029 / 0.087	0.140	0.0140
Valencene	0.018 / 0.055	0.079	0.0079
Eucalyptol	0.051 / 0.155	<loq< th=""><th>< LOQ</th></loq<>	< LOQ
Fenchol	0.051 / 0.153	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Guaiol	0.035 / 0.106	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Camphene	0.038 / 0.116	ND	ND
Sabinene	0.024 / 0.073	ND	ND
α Phellandrene	0.048 / 0.144	ND	ND
3 Carene	0.028 / 0.085	ND	ND
α Terpinene	0.051 / 0.155	ND	ND
Ocimene	0.053 / 0.16	ND	ND
γ Terpinene	0.038 / 0.114	ND	ND
Sabinene Hydrate	0.046 / 0.138	ND	ND
Fenchone	0.06 / 0.181	ND	ND
Terpinolene	0.042 / 0.128	ND	ND
TOTAL		15.212 mg/g	1.5212%

TOTAL 15.212 mg/g 1.5212%

Compound	LOD/LOQ (mg/g) ⑦	Result (mg/g)	Result (%)
(-)-Isopulegol	0.026 / 0.08	ND	ND
Camphor	0.08 / 0.242	ND	ND
Isoborneol	0.028 / 0.085	ND	ND
Borneol	0.063 / 0.19	ND	ND
Menthol	0.043 / 0.129	ND	ND
Nerol	0.042 / 0.128	ND	ND
R-(+)-Pulegone	0.016 / 0.047	ND	ND
Geraniol	0.037 / 0.112	ND	ND
Geranyl Acetate	0.025 / 0.076	ND	ND
α Cedrene	0.012 / 0.035	ND	ND
Cedrol	0.022 / 0.066	ND	ND
TOTAL		15.212 mg/g	1.5212%

Show Less

Pesticide and plant growth regulator analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) or gas chromatography-mass spectrometry (GC-MS). *GC-MS utilized where indicated.

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by LC-MS or QSP 1213 -Analysis of Pesticides by GC-MS

Category 1 Pesticide Test Results | 10/06/2019 | TESTED

Filter by

Swipe left on table to see additional columns

	LOD/LOQ	Action Limit	Result	
Compound	(µ g/g)	(μ g/g) ⑦	(µg/g)	Result

Category 2 Pesticide Test Results | 10/06/2019 | PASS

Filter by

Swipe left on table to see additional columns

Compound	LOD/LOQ (μ g/g) ⑦	Action Limit (µg/g) ②	Result (µg/g)	Result
Abamectin	0.030 / 0.091	0.1	ND	Pass
Bifenazate	0.012 / 0.035	0.1	ND	Pass
Bifenthrin	0.013 / 0.038	3.0	ND	Pass
Boscalid	0.008 / 0.023	0.1	ND	Pass
Etoxazole	0.007 / 0.022	0.1	ND	Pass
Imidacloprid	0.017 / 0.050	5.0	ND	Pass
Myclobutanil	0.015 / 0.044	0.1	ND	Pass
Piperonylbutoxide	0.007 / 0.020	3.0	ND	Pass
Pyrethrins	0.012 / 0.036	0.5	ND	Pass
Spinosad	0.010 / 0.031	0.1	ND	Pass
Spiromesifen	0.005 / 0.015	0.1	ND	Pass
Spirotetramat	0.014 / 0.042	0.1	ND	Pass

Learn more

Ingesting pesticides can be dangerous, even at the smallest doses. Our <u>pesticide</u> <u>analysis (https://www.sclabs.com/pesticide-testing/)</u> can detect trace amounts of chemical pesticides in dried flowers and cannabis concentrates.

Mycotoxin Analysis **Not Tested**

Residual Solvents Analysis **Not Tested**

Heavy Metals Analysis **Not Tested**

Microbial Impurities Analysis

Show Less

Analysis conducted by polymerase chain reaction (PCR) and fluorescence detection of microbial impurities.

Method: QSP 1221 - Analysis of Microbial Impurities

Microbial Impurities Test Results (PCR) | 10/07/2019 | PASS

Filter by

Swipe left on table to see additional columns

Compound	Action Limit ①	Result	Result
Shiga toxin-producing <i>Escherichia coli</i>	ND	ND	Pass
Salmonella spp.	ND	ND	Pass
Aspergillus fumigatus	ND	ND	Pass
Aspergillus flavus	ND	ND	Pass
Aspergillus niger	ND	ND	Pass
Aspergillus terreus	ND	ND	Pass

Learn more

Microbial impurity testing (https://www.sclabs.com/microbial-impurity-testing/) detects microorganisms such as bacteria, fungi, and yeast that thrive in the same conditions needed for cultivation. Some of these, especially E. coli, can be extremely harmful when ingested.

Water Activity Analysis **Not Tested**

Vitamin E Analysis **Not Tested**

COA ID: 191004P008-003

For quality assurance purposes. Not a Pre-Harvest Hemp Lab Test Report. These results relate only to the sample included on this report. This report shall not be reproduced, except in full, without written approval of the laboratory.

Sample Certification: California Code of Regulations Title 16 Effect Date January 16, 2019. Authority: Section 26013, Business and Professions Code. Reference: Sections 26100, 26104 and 26110, Business and Professions Code.

Decision Rule: Statements of conformity (e.g. Pass/Fail) to specifications are made in this report without taking measurement uncertainty into account. Where statements of conformity are made in this report, the following decision rules are applied: PASS – Results within limits/specifications, FAIL – Results exceed limits/specifications.

References: limit of detection (LOD), limit of quantification (LOQ), not detected (ND), not tested (NT)

BCC License No. C8-0000013-LIC | ISO/IES 17025 : 2017 Accredited PJLA Accreditation Number 87168

About (https://www.sclabs.com/team/) Services (https://www.sclabs.com/services/)
Resources (https://www.sclabs.com/resources/)
Partners (https://www.sclabs.com/partners/) FAQ (https://www.sclabs.com/faq/)
Blog (https://www.sclabs.com/blog/) Events (https://www.sclabs.com/events/)
Support (https://www.sclabs.com/contact-us/) Privacy (https://www.sclabs.com/privacy-policy/) Terms (https://www.sclabs.com/terms/) Careers (https://www.sclabs.com/careers/) Contact Us (https://www.sclabs.com/contact-us/)
Phone: (866) 435-0709
Email: info@sclabs.com (https://www.sclabs.com/contact-us/)
Join our newsletter
me@example.com Send
© 2021 SC Labs. All rights reserved. All trademarks referenced are trademarks of either SC Labs or their respective owners.
(https://www.youtube.com/user/SantaCruzLabs) (https://twitter.com/user/SantaCruzLabs)
(https://twitter.com/SCLaboratories) (f)
(https://www.facebook.com/SCLaboratories/)
(https://instagram.com/_sclabs/)

•